Promising directions for increasing the efficiency of customs scanning devices

  • T. Sakhno
  • A. Kobischan
  • L. Guba
  • Y. Basova
  • A. Semenov
Keywords: customs equipment, cargo scanning, X-rays, muons, muon tomography

Abstract

The purpose of the article is to summarize and comparative analysis of modern research in the field of scanning equipment for customs, airports and ports. Today, 70 % of scanning devices in the world are based on the use of X-rays. This equipment can significantly reduce the time of customs inspection of goods, but it also has significant drawbacks. Therefore, it is urgent to further search for modern technologies that would become the basis for the development of highly effective modern scanning devices capable of detecting illegal and hazardous materials, such as explosives, chemical weapons, drugs, radioactive materials, and the like during customs inspection of goods. One of the promising areas of introscopy of large loads is muon tomography. The advantages of muon tomography, such as high penetrating power, the absence of additional radiation exposure on personnel and controlled goods and vehicles, the ability to construct a three-dimensional image of the controlled object, and the identification of contraband goods in shielded containers, make it a promising method of introscopy for customs control of bulky cargo. It is important that muons are safe to use and do not pose any risk to human health (unlike, for example, X-rays), and do not harm the environment in any appreciable way. Therefore, their use is not regulated by safety regulations. Muon scanning technology is under development primarily due to poor muon statistics over a short period of time. For customs purposes, space muons can be used as follows: to detect shielded nuclear materials and to identify drugs and explosives. The reason that currently makes it impossible to introduce muon tomographs as an independent means of customs control in the practical activities of customs authorities is the absence of sensitive detector of muon radiation, the search for which is the goal of further research in this area.

References

1. Пантелеева В. В. Сравнительный анализ возможностей рентгеновской, нейтронной и мюонной томографии товаров и транспортных средств для целей таможенного контроля / В. В. Пантелеева, Д. Н. Афонин // Бюллетень инновационных технологий. – Т. 3. – № 1(9). – 2019. – С. 42–44.
2. Radiation technologies: view from Russia / Andreeva N. S., Budnik S. V., Bryazgin A. A. and others // Radiation technologies, RVC, Moscow. – 2015. – Р. 26–27.
3. Min H. Challenges and opportunities for implementing X-ray scanning technology at the Korean hub port / H. Min // Int. J. Logistics Systems and Management. –2016. – Vol. 25. – № 4. – Р. 513–531.
4. Jaccarda N. Tackling the X-ray cargo inspection challenge using machine learning / N. Jaccarda, T. W. Rogersa, E. J. Morton // Anomaly Detection and Imaging with X-Rays (ADIX). – 2016. – Vol. 9847. – Р. 1–13.
5. Yifan Z. Research on material discrimination method by cosmic ray muon tomography / Z. Yifan // Master thesis, dual diploma program advanced level, School of Science Tsinghua University, Stockholm – Beijing. – 2018. – Р. 25.
6. Рузайкин И. В. Анализ современного состояния информационно-технического обеспечения таможенного контроля живых животных, перемещаемых через таможенную границу / И. В. Рузайкин // Бюллетень инновационных технологий. – 2018. – Том 2, № 1(5). – С. 37–40.
7. Hartman J. 3D imaging using combined neutron-photon fan-beam tomography / J. Hartman, A. Pour Yazdanpanah, A. Barzilov, E. Regentova // A Monte Carlo study Applied Radiation and Isotopes. – 111. – 2016. – Р. 110–116.
8. Bendahan J. Vehicle and Cargo Scanning for Contraband / J. Bendahan // Physics Procedia. – 2017. – № 90. – Р. 242–255.
9. Guidelines for the procurement and deployment of scanning/NII equipment. World customs organization. – 2018. – 27 р. Available at: http://www.wcoomd.org/-/media/wco/public/global/pdf/topics/facilitation/instruments-andtools/tools/safe-package/nii-guidelines-2018/nii-guidelines-en_dec-2018.pdf?la=en. (accessed: 07.09.2020).
10. Yousri A. M. Scanning of cargo containers by gamma-ray and fast neutron radiography / A. M. Yousr, A. M. Osman, W. A. Kansouh, A. M. Reda, I. I. Bashter, R. M. Megahid // Armenian J. Phys. – Vol. 5. – № 1. – 2012. – Р. 1–7.
11. Eberhardt J. Fast Neutron and GammaRay Interrogation of Air Cargo Containers / J. Eberhardt, Y. Liu // Proceeding or science. – 2006. – P. 1–11.
12. He W. A grey incidence algorithm to detect high-Z material using cosmic ray muons / W. He, S. Xiao, M. Shuai, Y. Chen, M. Lan, M. Wei, Q. Anb, X. Lai // Journal of Instrumentation JINST . – 2017. – № 12. – P. 100–119.
13. Morishima K. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons / K. Morishima, A. Nishio, M. Kuno et al. // Nature. – 2017. – № 552. – Р. 386–390.
14. Афонин Д. Н. Перспективы применения мюонной томографии при таможенном контроле / Д. Н. Афонин // Бюллетень инновационных технологий. – 2018. – Т. 2. – № 2(6). – С. 18–20.
15. Carbone D. An experiment of muon radiography at Mt Etna (Italy) / D. Carbone, D. Gibert, J. Marteau, M. Diament, L. Zuccarello, E. Galichet // Geophys. J. Int. – 2014. – Р. 196, 633–643.
16. Morris C. L. Tomographic Imaging with Cosmic Ray Muons / C. L. Morris, C. C. Alexander, J. D. Bacon et al. // Science and Global Security. – 2008. – Vol. 16. – Р. 37–53.
17. Borozdin K. Cosmic-ray muon tomography and its application to the detection of high-z materials / K. Borozdin, T. Asaki, R. Chartrand et al. // Los Alamos National Laboratory, University of South Carolina. – 2014. – Р. 18.
18. Bendahan J. Vehicle and Cargo Scanning for Contraband / J. Bendahan // Physics Procedia – 2017. – № 90. – Р. 242–255.
Article views: 117
PDF Downloads: 50
Published
2021-07-30
How to Cite
Sakhno, T., Kobischan, A., Guba, L., Basova, Y., & Semenov, A. (2021). Promising directions for increasing the efficiency of customs scanning devices. Science Bulletin of Poltava University of Economics and Trade. Series "Technical Sciences", 96(1), 139-148. https://doi.org/10.37734/2518-7171-2020-1-17

Most read articles by the same author(s)