THE METHODOLOGY FOR SHORT-TERM FORECASTING OF CRYPTOCURRENCY EXCHANGE RATES
Abstract
The purpose of this article is to present the methodology of short-term forecasting of cryptocurrency exchange rates, which describes the main stages of statistical research using methods of intelligent data analysis and machine learning. The growing number of cryptocurrencies and their high volatility have made cryptocurrency exchange rate forecasting an important research topic. Short-term forecasting of cryptocurrency exchange rates is difficult due to their high volatility, lack of a fundamental valuation model, and the influence of many factors. Creating a methodology for short-term forecasting of cryptocurrency exchange rates provides a comprehensive basis for further statistical analysis and constructing a forecasting model. Methodology of research. Research methodology is the collection and analysis of historical data using the following methods: system analysis, analytical method (statistical analysis). Findings. The scheme of the CRISP-DM standard has been adapted for further research on the forecasting of cryptocurrency exchange rates. The framework consists of 8 modules covering all the necessary steps in the forecasting process, from data understanding and pre-processing to model selection, training, evaluation and deployment. Practical value. Developing a methodology for short-term forecasting requires extensive data analysis and research. This practical value lies in advancing statistical techniques, machine learning algorithms, and intelligent data analysis methods. It contributes to the overall understanding of cryptocurrency markets and facilitates further research in the field. The results of this study have practical implications for investors and risk managers looking for tools to predict short-term cryptocurrency prices. The proposed methodology can be used to make investment decisions and improve risk management strategies by providing accurate forecasts of future values of cryptocurrency exchange rates. This can help investors make more informed decisions about buying and selling cryptocurrencies, and help risk managers develop strategies to reduce the resulting costs.
References
Даценко Н.В. Застосування дерев класифікації та регресії до прогнозування часових рядів фінансових інструментів. Вчені записки. Сер. Економіко-математичні методи. 2018. № 19. С. 169–181. URL: https://ir.kneu.edu.ua/bitstream/handle/2010/35922/aref_Datsenko.pdf?sequence=1&isAllowed=y (дата звернення: 21.02.2023).
Дербенцев В., Великоіваненко Г., Даценко Н. Застосування методів машинного навчання до прогнозування часових рядів криптовалют. Нейро-нечіткі технології моделювання в економіці. 2019. № 8. С. 65–93. DOI: http://doi.org/10.33111/nfmte.2019.065 (дата звернення: 03.03.2023).
Сайт Alpha Vantage. URL: https://www.alphavantage.co (дата звернення: 26.02.2023)
Сайт Coin Market Cap. URL: https://coinmarketcap.com/currencies/bitcoin (дата звернення: 20.02.2023)
Akyildirim E., Goncuy A., & Sensoy A. (2018) Prediction of Cryptocurrency Returns Using Machine Learning. URL: https://www.researchgate.net/publication/329322600. (дата звернення: 25.02.2023).
Catania L., Grassi S. Modelling Crypto-Currencies Financial TimeSeries. CEIS Research Paper. 2017. Vol. 15, Iss. 8, No. 417. P. 1–39. URL: https://ideas.repec.org/p/rtv/ceisrp/417.html. (дата звернення: 26.02.2023)
Corbet, Shaen and Lucey, Brian M. and Urquhart, Andrew and Yarovaya, Larisa, Cryptocurrencies as a Financial Asset: A Systematic Analysis (March 18, 2018). URL: https://ssrn.com/abstract=3143122. (дата звернення: 26.02.2023).
Derbentsev V., Matviychuk A., Soloviev V.N. (2020) Forecasting of Cryptocurrency Prices Using Machine Learning. In: Pichl L., Eom C., Scalas E., Kaizoji T. (eds) Advanced Studies of Financial Technologies and Cryptocurrency Markets. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-4498-9_12 (дата звернення: 26.02.2023).
Hitam N. A., Ismail A. R. Comparative Performance of Machine Learning Algorithms for Cryptocurrency. ResearchGate. 2018. P. 1–11. URL: https://www.researchgate.net/publication/327415267. (дата звернення: 20.02.2023).
Datsenko N.V. (2018) Zastosuvannia derev klasyfikatsii ta rehresii do prohnozuvannia chasovykh riadiv finansovykh instrumentiv. Vcheni zapysky. Ser. Ekonomiko-matematychni metody. № 19. p. 169–181. Available at: https://ir.kneu.edu.ua/bitstream/handle/2010/35922/aref_Datsenko.pdf?sequence=1&isAllowed=y (accessed 21.02.2023).
Derbentsev V., Velykoivanenko H., Datsenko N. (2019) Zastosuvannia metodiv mashynnoho navchannia do prohnozuvannia chasovykh riadiv kryptovaliut. Neiro-nechitki tekhnolohii modeliuvannia v ekonomitsi. № 8. p. 65–93. DOI: http://doi.org/10.33111/nfmte.2019.065 (accessed 03.03.2023).
Sait Alpha Vantage. Available at: https://www.alphavantage.co (accessed 26.02.2023)
Sait Coin Market Cap. Available at: https://coinmarketcap.com/currencies/bitcoin (accessed 20.02.2023)
Akyildirim E., Goncuy A., & Sensoy A. (2018) Prediction of Cryptocurrency Returns Using Machine Learning. Available at: https://www.researchgate.net/publication/329322600. (accessed 25.02.2023).
Catania L., Grassi S. Modelling Crypto-Currencies Financial TimeSeries. CEIS Research Paper. 2017. Vol. 15, Iss. 8, No. 417. P. 1–39. Available at: https://ideas.repec.org/p/rtv/ceisrp/417.html. (accessed 26.02.2023)
Corbet, Shaen and Lucey, Brian M. and Urquhart, Andrew and Yarovaya, Larisa, Cryptocurrencies as a Financial Asset: A Systematic Analysis (March 18, 2018). Available at: https://ssrn.com/abstract=3143122. (accessed 26.02.2023).
Derbentsev V., Matviychuk A., Soloviev V.N. (2020) Forecasting of Cryptocurrency Prices Using Machine Learning. In: Pichl L., Eom C., Scalas E., Kaizoji T. (eds) Advanced Studies of Financial Technologies and Cryptocurrency Markets. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-4498-9_12 (accessed 26.02.2023).
Hitam N. A., Ismail A. R. (2018) Comparative Performance of Machine Learning Algorithms for Cryptocurrency. ResearchGate. P. 1–11. Available at: https://www.researchgate.net/publication/327415267. (accessed 20.02.2023).