MODEL OF ARTIFICIAL INTELLIGENCE AND CHATGPT USE FOR STUDY PERSONALIZATION IN HIGHER EDUCATION

Keywords: binary assessment, higher education, performance, model, personalized study, study results, strategy, technology, artificial intelligence (AI), ChatGPT, SWOT analysis

Abstract

Artificial intelligence is being quickly implemented for students’ study in 2022-2024 (both Ukraine and worldwide). Therefore, new AI policies, rules and models become increasingly more relevant. The article purpose is creation of the AI and ChatGPT use model to personalize study in higher education. The personalized study concept is analyzed. Differences between personalized and traditional education are defined. Personalized study is regarded as flexible, interactive and individually adaptable. AI can focus on the primary role of students in the education system with study adjustment to their goals, interests and needs. Such an approach promotes a better preparation of students as future labor market participants, which ensures development of their social and psychological values. Via the binary assessment method, the AI impact on study personalization was considered (medium result: 72.7%). AI tools proved to satisfy most needs of personalized study. To personalize study in higher education, we proposed the AI and ChatGPT use model consisting of three interrelated units: study process, AI integration, study results. Besides, main groups of personalization strategies were classified (by study personalization levels; by interaction with students; by AI integration scope; by AI use aims). AI integration strategies focus on raising academic performance, satisfying students and creating specific educational products. Selection of AI integration strategies within the educational process as well as study environment of the higher education institution is defined via study transformation goals and readiness to implement new technologies.

References

Chegg.org (2023) Global Student Survey 2023. Available at: https://8dfb1bf9-2f43-45af-abce-2877b9157e2c.usrfiles.com/ugd/8dfb1b_e9bad0aef091478397e6a9ff96651f6d.pdf (accessed July 09, 2024)

Rui D. (2023) Surge in Chinese Students Using AI for Academic Edge: New Survey. Sixth Tone. Available at: https://www.sixthtone.com/news/1014132 (accessed July 09, 2024)

von Garrel J., & Mayer J. (2023) Artificial Intelligence in studies—use of ChatGPT and AI-based tools among students in Germany. Humanities and Social Sciences Communications, vol. 10(799). Available at: https://doi.org/10.1057/s41599-023-02304-7 (accessed July 09, 2024)

Neves J., Freeman J., Stephenson R., Sotiropoulou D. P. (2024) Student Academic Experience Survey 2024. Advance HE, HEPI. Available at: https://s3.eu-west-2.amazonaws.com/assets.creode.advancehe-document-manager/documents/advance-he/Student%20Academic%20Experience%20Survey%202024_1718100686.pdf (accessed July 10, 2024)

Digital Care (2023) Wyniki badania: "Technologia okiem studenta" – jak korzysta z elektroniki oraz AI? Focus On Business. Available at: https://focusonbusiness.eu/pl/wiadomosci/wyniki-badania-technologia-okiem-studenta-jak-korzysta-z-elektroniki-oraz-ai/30494 (accessed July 10, 2024)

Compilatio, Le Sphinx polling institute (2023) Press release Nov. 2023 – Survey results: lecturers and students confront their views on AI. Compilatio. Available at: https://www.compilatio.net/en/blog/press-release-ai-survey-2023 (accessed July 11, 2024)

Samaieva Y. (2023) Stavlennia ukraintsiv do shtuchnoho intelektu na dyvo lehkovazhne. Darma [The attitude of Ukrainians toward artificial intelligence is surprisingly lighthearted. It's a shame]. ZN.UA. Available at: https://zn.ua/ukr/TECHNOLOGIES/stavlennja-ukrajintsiv-do-shtuchnoho-intelektu-na-divo-lehkovazhne-darma.html (accessed July 12, 2024)

Kaminskyi B. (2024) Chy vidbere ShI robotu u maibutnikh aitivtsiv: opytuvannia EPAM University [Will AI take away jobs from future IT professionals: EPAM University survey]. Speka. Available at: https://speka.media/ci-vidbere-si-robotu-u-maibutnix-aitivciv-opituvannya-eram-university-vzddzg (accessed July 12, 2024)

Bloom B. S. (1984) The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educational Researcher, vol. 13(6), pp. 4–16. Available at: https://web.mit.edu/5.95/www/readings/bloom-two-sigma.pdf (accessed April 29, 2024)

Shemshack A., & Spector J. M. (2020) A systematic literature review of personalized learning terms. Smart Learning Environments, vol. 7(33), pp 1–20. DOI: https://doi.org/10.1186/s40561-020-00140-9 (accessed April 29, 2024).

Tkachuk H. V. (2021) Model realizatsii personalizovanoho navchannia studentiv zakladu vyshchoi osvity [Model of realization of personalized learning of students of higher education institution]. Engineering and Educational Technologies, vol. 9(3), pp. 8-17. Available at: https://dspace.udpu.edu.ua/bitstream/123456789/14222/1/EETECS2021_009(3)_001.pdf (accessed April 29, 2024).

Chemerys O. A., & Kibenko L. M. (2024) Personalizatsiia navchannia yak umova pidvyshchennia yakosti profesiinoi pidhotovky [Personalization of training as a condition for improving the quality of professional training]. Naukovi doslidzhennia ta metodyka yikh provedennia: svitovyi dosvid ta vitchyzniani realii – 2024: VII Mizhnarodna naukovo-praktychna konferentsiia (Vinnytsia, Vienna, March 15th, 2024). Vinnytsia: Grail of Science, pp. 385–387. DOI: https://doi.org/10.36074/grail-of-science.15.03.2024.062 (accessed May 02, 2024)

Quandeng G. (2022) Pereosmyslennia personalizovanoi modeli navchannia [Rethinking the personalized learning model]. Akademichni studii. Seriia «Pedahohika» – Academic studies. Series "Pedagogy", vol. 4(17), pp. 117–121. DOI: https://doi.org/10.52726/as.pedagogy/2022.4.17 (accessed May 02, 2024)

Korchova H. (2022) Personalizovane navchannia yak naukovo-metodychna problema u profesiinii osviti [Personalized learning as scientific and methodological problem in professional education]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho – Bulletin of the Kremenchug National University named after Mikhail Ostrogradsky, vol. 5(8), pp. 61–65. DOI: https://doi.org/10.32782/1995-0519.2022.5.8 (accessed May 02, 2024)

Aslan A., Bakir I., & Vis I. F. A. (2020) A Dynamic Thompson Sampling Hyper-Heuristic Framework for Learning Activity Planning in Personalized Learning. European Journal of Operational Research, vol. 286(2), pp. 673–688. DOI: http://dx.doi.org/10.1016/j.ejor.2020.03.038 (accessed May 02, 2024)

Digital Defynd (2024) Personalized Learning vs Traditional Learning. Available at: https://digitaldefynd.com/IQ/personalized-learning-vs-traditional-learning/ (accessed July 12, 2024)

Felder R. M., & Silverman L. (1988) Learning and Teaching Styles in Engineering Education. Journal of Engineering Education, vol. 78 (7), pp. 674–681. Available at: https://www.researchgate.net/publication/257431200_Learning_and_Teaching_Styles_in_Engineering_Education (accessed April 21, 2024)

King M. R. N., Rothberg S. J., Dawson R. J., & Batmaz F. (2016) Bridging the edtech evidence gap: A realist evaluation framework refined for complex technology initiatives. Journal of Systems and Information Technology, vol. 18(1), pp. 18–40. DOI: https://doi.org/10.1108/JSIT-06-2015-0059 (accessed July 08, 2024)

Sosa-Diaz M. J., Sierra-Daza M. C., Arriazu-Muñoz R., Llamas-Salguero F., & Duran-Rodriguez N. (2022) “EdTech Integration Framework in Schools”: Systematic Review of the Literature. Frontiers Education, vol. 7(895042), pp. 1–14. DOI: https://doi.org/10.3389/feduc.2022.895042 (accessed July 08, 2024)

Januszewski A., & Molenda M. (2007) Educational Technology: A Definition with Commentary (2nd. ed.). New York, Oxford: Routledge, p. 384. Available at: https://books.google.com.ua/books?id=0KnYIgZfxRwC&printsec=frontcover&hl=uk#v=onepage&q&f=false (accessed July 08, 2024)

Corbeil J. R., & Corbeil M. E. (2013) What do educational technologists do? The discipline as defined by educational technology practitioners. Issues in Information Systems, vol. 14(2), pp. 336–345. DOI: https://doi.org/10.48009/2_iis_2013_336-345 (accessed July 08, 2024)

Tymoshchuk T. Geniusee (2022) Education Technology: A Complete Guide to EdTech. Available at: https://geniusee.com/single-blog/education-technology-a-complete-guide-to-edtech (accessed May 11, 2024)

Raja R., & Nagasubramani P. C. (2018) Impact of modern technology in education. Journal of Applied and Advanced Research, vol. 3(1), pp. 33–35. DOI: https://doi.org/10.21839/jaar.2018.v3is1.165 (accessed May 10, 2024)

Herold B. (2016) Technology in Education: An Overview. Education Week. Available at: https://www.edweek.org/technology/technology-in-education-an-overview/2016/02 (accessed May 16, 2024)

Schmid R., Pauli C., Stebler R., Reusser K., & Petko D. (2022) Implementation of technology-supported personalized learning–its impact on instructional quality. The Journal of Educational Research, vol. 115(3), pp. 187–198. Available at: https://doi.org/10.1080/00220671.2022.2089086 (accessed May 17, 2024)

Major L., Francis G. A., & Tsapali M. (2021) The effectiveness of technology‐supported personalised learning in low‐ and middle‐income countries: A meta‐analysis. British Journal of Educational Technology, vol. 52(5), pp. 1935–1964. Available at: https://doi.org/10.1111/bjet.13116 (accessed May 10, 2024)

Bartolomé A., Castañeda L., & Adell J. (2018) Personalisation in educational technology: the absence of underlying pedagogies. International Journal of Educational Technology in Higher Education, vol. 15(14), pp. 1–17. DOI: https://doi.org/10.1186/s41239-018-0095-0 (accessed May 11, 2024)

Maher J. K. O. J. (2023) Personalized learning through AI. Advances in Engineering Innovation, vol. 5(1), pp. 16–19. DOI: http://dx.doi.org/10.54254/2977-3903/5/2023039 (accessed July 09, 2024)

Chen L. (2021) Application of Artificial Intelligence Technology in Personalized Online Teaching under the Background of Big Data. Journal of Physics: Conference Series, vol. 1744(4), pp. 1–6. DOI: http://dx.doi.org/10.1088/1742-6596/1744/4/042208 (accessed July 09, 2024)

Ayeni O. O., Hamad N. M. A., Chisom O. N., Blessing O., & Adewusi O. E. (2024) AI in education: A review of personalized learning and educational technology. GSC Advanced Research and Reviews, vol. 18(2), pp. 261–271. DOI: https://doi.org/10.30574/gscarr.2024.18.2.0062 (accessed July 09, 2024)

Tapalova O., & Zhiyenbayeva N. (2022) Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. The Electronic Journal of e-Learning, vol. 20(5), pp. 639–653. DOI: https://doi.org/10.34190/ejel.20.5.2597 (accessed July 09, 2024)

Fitria T. N. (2021). Artificial intelligence (AI) in education: using AI tools for teaching and learning process. Prosiding Seminar Nasional & Call for Paper STIE AAS, vol. 4(1), pp. 134–147. Available at: https://prosiding.stie-aas.ac.id/index.php/prosenas/article/view/106 (accessed July 11, 2024)

Murtaza M., Ahmed Y., Shamsi J. A., Sherwani F., & Usman M. (2022) AI-Based Personalized E-Learning Systems: Issues, Challenges, and Solutions. IEEE Access, vol. 10, pp. 81323–81342. DOI: https://doi.org/10.1109/ACCESS.2022.3193938 (accessed July 11, 2024)

Pratama M. P., Sampelolo R., Lura H. (2023) Revolutionizing education: harnessing the power of artificial intelligence for personalized learning. Klasikal: Journal of Education, Language Teaching and Science, vol. 5(2), pp. 350–357. DOI: https://doi.org/10.52208/klasikal.v5i2.877 (accessed July 11, 2024)

Demianenko V. M. (2020) Model adaptyvnoi navchalnoi systemy informatsiinoho prostoru vidkrytoi osvity [The model for adaptive learning systems of open education information environment]. Informatsiini tekhnolohii i zasoby navchannia – Information technologies and learning tools, vol. 77(3), pp. 27–38. DOI: http://dx.doi.org/10.33407/itlt.v77i3.3603 (accessed July 11, 2024)

Viznyuk I. M., Buhlai N. M., Kutsak L. V., Polishchuk A. S., & Kylyvnyk V. V. (2021) Vykorystannia shtuchnoho intelektu v osviti [Use of artificial intelligence in education]. Suchasni informatsiini tekhnolohii ta innovatsiini metodyky navchannia v pidhotovtsi fakhivtsiv:metodolohiia, teoriia, dosvid, problem – Modern Information Technologies and Innovation Methodologies of Education in Professional Training Methodology Theory Experience Problems, vol. 59(1), pp. 14–22. DOI: https://doi.org/10.31652/2412-1142-2021-59-14-22 (accessed July 11, 2024)

Kilchenko A. V. (2023) Rol tekhnolohii shtuchnoho intelektu u naukovo-pedahohichnii diialnosti osvitnikh zakladiv The Role of Artificial Intelligence [Technologies in the scientific and pedagogical activities of educational institutions]. Tsyfrova osvita: suchasni realii ta perspektyvy rozvytku – 2023: Materialy Vseukrainskoi naukovo-praktychnoi konferentsii (Zaporizhzhia, October 26th, 2023). Zaporizhzhia: Zaporizhzhia Regional Institute of Postgraduate Pedagogical Education, pp. 1–9. Available at: https://lib.iitta.gov.ua/id/eprint/737700/1/%D0%9A%D1%96%D0%BB%D1%8C%D1%87%D0%B5%D0%BD%D0%BA%D0%BE%20%D0%90.%D0%92._%D1%82%D0%B5%D0%B7%D0%B8_%D0%97%D0%B0%D0%BF%D0%BE%D1%80%D1%96%D0%B6%D0%B6%D1%8F.pdf (accessed July 12, 2024)

Ali L., Sorrentino C., Martiniello L. (2023) Personalized learning in the era of digital learning and artificial intelligence: futuristic perspectives and challenges. Giornale Italiano di Educazione alla Salute, Sport eDidattica Inclusiva – Italian Journal of Health Education, Sports and Inclusive Didactics, vol. 7(1), pp. 1–20. DOI: http://dx.doi.org/10.32043/gsd.v7i1.856 (accessed July 12, 2024)

Drach, I., Petroye, O., Borodiyenko, O., Reheilo, I., Bazeliuk, O., Bazeliuk, N., & Slobodianiuk, O. (2023) Vykorystannia shtuchnoho intelektu u vyshchii osviti [The Use of Artificial Intelligence in Higher Education]. Mizhnarodnyi naukovyi zhurnal «Universytety i liderstvo» – International Scientific Journal of Universities and Leadership, vol. 15, pp. 66–82. DOI: https://doi.org/10.31874/2520-6702-2023-15-66-82 (accessed March 29, 2024)

Foltynek T., Bjelobaba S., Glendinning I., Khan Z. R., Santos R., Pavletic P., & Kravjar J. (2023) ENAI Recommendations on the ethical use of Artificial Intelligence in Education. International Journal for Educational Integrity, vol. 19(12). DOI: https://doi.org/10.1007/s40979-023-00133-4 (accessed April 12, 2024)

Chiu T. K. F., Xia, Q., Zhou X., Chai C. S., & Cheng M. (2023) Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, vol. 4(100118), pp. 1–15. DOI: https://doi.org/10.1016/j.caeai.2022.100118 (accessed April 16, 2024)

Chan C. K.Y. (2023) A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, vol. 20(38), pp. 1–25. DOI: https://doi.org/10.1186/s41239-023-00408-3 (accessed April 13, 2024)

Cardona M. A., Rodríguez R. J., & Ishmael K. (2023) Artificial Intelligence and the Future of Teaching and Learning. Washington: The U.S. Department of Education Office of Educational Technology’s, 67 p. Available at: https://tech.ed.gov/ai-future-of-teaching-and-learning/?trk=article-ssr-frontend-pulse_little-text-block (accessed April 02, 2024)

Marienko M., & Kovalenko V. (2023) Shtuchnyi intelekt ta vidkryta nauka v osviti [Artificial intelligence and open science in education]. Fizyko-matematychna osvita – Physical and Mathematical Education, vol. 38(1), pp. 48–53. DOI: https://doi.org/10.31110/2413-1571-2023-038-1-007 (accessed April 11, 2024)

Velibor B., & Indrasen P. (2023) Chat GPT and education. Pp. 1–8. DOI: https://doi.org/10.13140/RG.2.2.18837.40168 (accessed April 04, 2024)

Ushakova I. O., & Pedan O. A. (2020) Osoblyvosti vykorystannia shtuchnoho intelektu v osviti [Features of the use of artificial intelligence in education]. Informatsiini tekhnolohii ta systemy – 2020: Mizhnarodna naukovo-praktichna konferenciya (Kharkiv, April 9th-10th, 2020). Kharkiv: Simon Kuznets Kharkiv National University of Economics, p. 31. Available at: https://it.hneu.edu.ua/wp-content/uploads/2021/10/tezy-dopovidej-mizhnarodnoyi-naukovo-praktychnoyi-konferencziyi-informaczijni-tehnologiyi-ta-systemy-2020.pdf#page=31 (accessed March 14, 2024)

Sullivan M., Kelly A., & McLaughlan P. (2023) ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, vol. 6(1), pp. 31–40. DOI: https://doi.org/10.37074/jalt.2023.6.1.17 (accessed April 04, 2024)

Palamar S., & Naumenko M. (2024) Shtuchnyi intelekt v osviti: vykorystannia bez porushennia pryntsypiv akademichnoi chesnosti [Artificial Intelligence in Education: Use Without Violating the Principles of Academic Integrity]. Osvitolohichnyi dyskurs – Educational discourse, vol. 1(44), pp. 68–83. DOI: https://doi.org/10.28925/2312-5829.2024.15 (accessed April 13, 2024)

Berdo R. S., Rasiun V. L., & Velychko V. A. (2023) Shtuchnyi intelekt ta yoho vplyv na etychni aspekty naukovykh doslidzhen v ukrainskykh zakladakh osvity [Artificial intelligence and its impact on ethical aspects of scientific research in Ukrainian educational institutions]. Akademichni vizii – Academic visions, vol. 22, pp. 1–10. DOI: https://doi.org/10.5281/zenodo.8174388 (accessed March 10, 2024)

Kulieshov S. O. (2023) Vplyv shtuchnoho intelektu na vyshchu osvitu Spoluchenykh Shtativ Ameryky [The impact of artificial intelligence on US higher education]. Tekhnolohii dobrochesnoho vykorystannia shtuchnoho intelektu u sferi osvity ta nauky – 2023: Vseukrainske naukovo-pedahohichne pidvyshchennia kvalifikatsii (Poltava, July 31st – September 10th, 2023). Odesa: Helvetyka, pp. 152–153. Available at: https://www.researchgate.net/profile/Nataliia-Furmanova/publication/377444350_VIKORISTANNA_STUCNOGO_INTELEKTU_DLA_PIDGOTOVKI_DO_ZANAT_NA_PRIKLADI_CHATGPT/links/65a7ab3dcc780a4b19c0019a/VIKORISTANNA-STUCNOGO-INTELEKTU-DLA-PIDGOTOVKI-DO-ZANAT-NA-PRIKLADI-CHATGPT.pdf#page=126 (accessed March 21, 2024)

Köbis L., & Mehner C. (2021) Ethical Questions Raised by AI-Supported Mentoring in Higher Education. Frontiers in Artificial Intelligence, vol. 4, pp. 1–9. DOI: https://doi.org/10.3389/frai.2021.624050 (accessed April 12, 2024)

Spivakovsky O. V., Omelchuk S. A., Kobets V. V., Valko N. V., & Malchykova D. S. (2023) Institutional policies on artificial intelligence in university learning, teaching and research. Information Technologies and Learning Tools, vol. 97(5), pp. 181–202. DOI: https://doi.org/10.33407/itlt.v97i5.5395 (accessed April 16, 2024)

Panukhnyk O. V. Shtuchnyi intelekt v osvitnomu protsesi ta naukovykh doslidzhenniakh zdobuvachiv vyshchoi osvity: vidpovidalni mezhi vmistu shtuchnoho intelektu [Artificial intelligence in the educational process and scientific research of higher education applicants: responsible boundaries of AI content]. Halytskyi ekonomichnyi visnyk – Galician economic journal, vol. 83(4), pp. 202–211. DOI: https://doi.org/10.33108/galicianvisnyk_tntu2023.04.202 (accessed March 09, 2024)

Bakhmat N. V. (2023) Shtuchnyi intelekt u vyshchii osviti: mozhlyvosti vykorystannia [Artificial intelligence in higher education: possibilities of using]. Pedahohichna osvita: teoriia i praktyka – Pedagogical Education: Theory and Practice, vol. 2(35), pp. 161–173. DOI: https://doi.org/10.32626/2309-9763.2023-161-173 (accessed April 12, 2024)

Jungherr A. (2023) Using ChatGPT and Other Large Language Model (LLM) Applications for Academic Paper Assignments. Bamberg: Otto-Friedrich-Universität, 48 p. Available at: https://nbn-resolving.org/urn:nbn:de:bvb:473-irb-589507 (accessed April 01, 2024)

Jürgen R., Samson T., & Shannon T. (2023) ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of Applied Learning & Teaching, vol. 6(1), pp. 342–363. DOI: https://doi.org/10.37074/jalt.2023.6.1.9 (accessed April 16, 2024)

Sodel O. (2023) Potentsial shtuchnoho intelektu u vyshchii osviti [The potential of AI in higher education]. Natsionalnyi universytet bioresursiv i pryrodokorystuvannia Ukrainy – National University of Life and Environmental Sciences of Ukraine. Available at: https://nubip.edu.ua/node/126807 (accessed March 16, 2024)

Mötteli C., Reusser K., Grob U., & Pauli C. (2023) The influence of personalized learning on the development of learning enjoyment. International Journal of Educational Research Open, vol. 5(100271), pp. 1–10. DOI: https://doi.org/10.1016/j.ijedro.2023.100271 (accessed July 14, 2024)

Dumont H., & Ready D. D. (2023) On the promise of personalized learning for educational equity. NPJ Sci Learn, vol. 8(26). DOI: https://doi.org/10.1038%2Fs41539-023-00174-x (accessed July 15, 2024)

Bruce F., Patrick S., Schneider C., & Ark T. V. (2017) What’s Possible with Personalized Learning? An Overview of Personalized Learning for Schools, Families & Communities. Vienna, VA: International Association for K-12 Online Learning (iNACOL), p. 28. Available at: https://aurora-institute.org/wp-content/uploads/iNACOL_Whats-Possible-with-Personalized-Learning.pdf (accessed July 15, 2024)

Çullhaj Dr. S. (2017) Key Features of Personalized Learning. European Journal of Multidisciplinary Studies, vol. 2(7), pp. 130–132. Available at: https://revistia.com/files/articles/ejms_v2_i7_17/Salian.pdf (accessed July 15, 2024)

Pane J. F., Steiner E. D., Baird M. D., & Hamilton L. S. (2015) Continued Progress: Promising Evidence on Personalized Learning. Santa Monica, CA: RAND Corporation, p. 52. Available at: https://www.rand.org/pubs/research_reports/RR1365.html (accessed July 15, 2024)

Johns S., Wolking M. (2018) The Core Four of Personalized Learning: The Elements You Need to Succeed. South San Francisco, California: Education Elements, p. 25. Available at: https://www.edelements.com/hubfs/Core_Four/Education_Elements_Core_Four_White_Paper.pdf (accessed July 15, 2024)

Yuyun I., & Suherdi D. (2023) Components and Strategies for Personalized Learning in Higher Education: A Systematic Review. ASIATEFL 2022, ASSEHR, vol. 749, pp. 271–290. DOI: http://dx.doi.org/10.2991/978-2-38476-054-1_23 (accessed July 15, 2024)

Hanover Research (2014) Best Practices in Personalized Learning Implementation. Arlington, VA: Hanover Research, p. 34. Available at: https://www.hanoverresearch.com/media/Best-Practices-in-Personalized-Learning-Implementation.pdf (accessed July 15, 2024)

Younas A., Subramanian K. P., Al-Haziazi M., Hussainy S. S., & Kindi A. N. S. A. (2023) A Review on Implementation of Artificial Intelligence in Education. International Journal of Research and Innovation in Social Science, vol. 7(8), pp. 1092–1100. DOI: https://doi.org/10.47772/ijriss.2023.7886 (accessed May 16, 2024)

Lake K. (2023) How To Personalize Learning Using AI. eLearning Industry. Available at: https://elearningindustry.com/how-to-personalize-learning-using-ai (accessed May 16, 2024)

Data Overload (2024) Personalized Learning and Skill Enhancement: Unleashing the Potential of AI in Education. Medium. Available at: https://medium.com/@data-overload/personalized-learning-and-skill-enhancement-unleashing-the-potential-of-ai-in-education-9b1f6af14bbd (accessed May 09, 2024)

AI transforms education industry. Data Science UA. Available at: https://data-science-ua.com/industries/ai-in-education/#pll_switcher (accessed July 16, 2024)

Shashank J. (2023) The Role of Technology in Education, Post Pandemic. eLearning Industry. Available at: https://elearningindustry.com/the-role-of-technology-in-education-post-pandemic (accessed May 16, 2024)

Article views: 18
PDF Downloads: 6
Published
2024-11-29
How to Cite
Tarasenko, S., Karintseva, O., Duranowski, W., Bilovol, A., & Petrova, A. (2024). MODEL OF ARTIFICIAL INTELLIGENCE AND CHATGPT USE FOR STUDY PERSONALIZATION IN HIGHER EDUCATION. Scientific Bulletin of Poltava University of Economics and Trade. A Series of “Economic Sciences”, (4 (114), 96-107. https://doi.org/10.37734/2409-6873-2024-4-16