USE OF MACHINE LEARNING METHODS AND MICROSERVICE ARCHITECTURE IN PRODUCT ANALYTICS

  • Nadiia Ivanchenko Taras Shevchenko National University of Kyiv
  • Oleksandr Podskrebko Taras Shevchenko National University of Kyiv
Keywords: object classification, product analytics, microservice architecture, cluster analysis, machine learning

Abstract

The purpose of this article is to present a customer classification methodology using a microservice architecture, which can be used to make marketing decisions and improve product management strategy and customer interaction. Customer classification is important to product analytics for a number of reasons, as it allows product manufacturers and businesses to understand their audience, adjust engagement strategies, and maximize the effectiveness of products and services. Methodology of research. The research methodology involves the use of the following methods: logical generalization, cluster analysis, analytical method (statistical analysis). Customer classification methodology is a systematic approach to grouping customers according to various characteristics or criteria to further provide personalized service and develop interaction strategies. The main purpose of such a classification is to learn about the variety of customers, their needs and characteristics in order to optimize communication and provide more effective services. Findings. The developed client classification microservice can be located both on a local host and on the Internet, certain parameters of the client are transferred to the model and it forms a forecast based on these data, which is essentially the number of the probable class to which this client should be assigned. Based on the analysis of the customer base, the construction of a clustering model, the Python programming language, and a set of specialized libraries, a microservice was built that will help classify new customers according to certain parameters. The use of microservices architecture facilitates the development, testing and maintenance of complex applications, providing flexibility and speed of response to changes in requirements and market conditions. However, proper planning, implementation, and management of microservices is key to avoiding the complexities associated with the growing number of services and their interactions. Practical value. The results of this study have practical implications for marketers and product management managers looking for tools to predict customer behavior. The proposed methodology and microservice can be used to create a decision support system in marketing activities.

References

Product Analytics: A Comprehensive Guide. URL: https://cxl.com/blog/product-analytics/ (дата звернення: 03.02.2024).

Mixpanel Guide: The Guide to Product Analytics. A book of questions and answers. URL: https://mixpanel.com/content/guide-to-product-analytics/report/ (дата звернення: 03.02.2024).

В’ялець О.В. Система управління взаємовідносинами з клієнтами: теоретичний аспект. Наукові праці НУХТ. 2019. Т. 25. № 3. С. 90–95.

Чміль Г.Л., Джгуташвілі Н.М. Цифровізація управління клієнтським досвідом у готельно-ресторанній індустрії. Бізнес Інформ. 2020. № 8. C. 237–245.

Eric Benjamin Seufert. Freemium Economics: Leveraging Analytics and User Segmentation to Drive Revenue. Morgan Kaufmann; 1st edition. 2014. 254 p.

Rodrigues Joanne. Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights. Addison-Wesley Professional, 2020. 360 p.

Бортнік А.М. Стратегічне управління взаємовідносинами з клієнтами на основі CRM. Стратегія економічного розвитку України. Київ : КНЕУ. 2012. № 30. С. 165–169.

Fowler M. Microservices. URL: https://martinfowler.com/articles/microservices.html (дата звернення: 03.02.2024).

Liashenko O., Podskrebko О., Ivanchenko N. (2022) The Impact of Data Analytics on the Nature of Doing Business. 12th International Conference on Advanced Computer Information Technologies (ACIT), Conference. Spišská Kapitula. 2022. P. 331–334.

Іванченко Н.О., Подскребко О.С. Інструменти аналізу ефективності взаємодії користувача з продуктом. Modernization of science and its influence on global processes: collection of scientific papers «SCIENTIA» with Proceedings of the IV International Scientific and Theoretical Conference, November 3, 2023. Bern, Swiss Confederation: International Center of Scientific Research, P. 21–24.

Microservices are hard. URL: https://hackernoon.com/microservices-are-hard-an-invaluable-guide-tomicroservices-2d06bd7bcf5d. (дата звернення: 01.02.2024).

What is Microservices Architecture? URL: https://smartbear.com/learn/api-design/what-are-microservices/ (дата звернення: 01.02.2024).

Дані з Kaggle про маркетингову кампанію URL: https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis. (дата звернення: 01.02.2024).

Product Analytics: A Comprehensive Guide. Available at: https://cxl.com/blog/product-analytics/ (accessed February 3, 2024).

A MIXPANEL GUIDE: The Guide to Product Analytics. A book of questions and answers. Available at: https://mixpanel.com/content/gui9de-to-product-analytics/report/ (accessed February 3, 2024).

Vialets, O. V. (2019) Systema upravlinnia vzaiemovidnosynamy z kliientamy: teoretychnyi aspect. Naukovi pratsi NUKhT, vol. 25, no. 3, pp. 90–95. [in Ukrainian]

Chmil H. L. and Dzhhutashvili N. M. (2020) Digitalization of Customer Experience Management in the hotel and restaurant industry. Business Inform, vol. 8, pp. 237–245. [in Ukrainian]

Eric Benjamin Seufert (2014) Freemium Economics: Leveraging Analytics and User Segmentation to Drive Revenue. Morgan Kaufmann; 1st edition. 254 p.

Rodrigues J. (2020) Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights. Addison-Wesley Professional, 360 p.

Bortnik A. M. (2012) Stratehichne upravlinnia vzaiemovidnosynamy z kliientamy na osnovi CRM. Strategy of economic development of Ukraine. Kyiv: KNEU. Vol. 30, pp. 165–169. [in Ukrainian]

Fowler M. Microservices. Available at: https://martinfowler.com/articles/microservices.html (accessed February 3, 2024).

Liashenko O., Podskrebko О., Ivanchenko N. (2022) The Impact of Data Analytics on the Nature of Doing Business. 12th International Conference on Advanced Computer Information Technologies (ACIT). Conference. Spišská Kapitula. Pp. 331–334. [in Ukrainian]

Ivanchenko N. O., Podskrebko O. S. (November 3, 2023) Instrumenty analizu efektyvnosti vzaiemodii korystuvacha z produktom. Modernization of science and its influence on global processes: collection of scientific papers «SCIENTIA» with Proceedings of the IV International Scientific and Theoretical Conference. Bern, Swiss Confederation: International Center of Scientific Research. Pp. 21–24. [in Ukrainian]

Microservices are hard. Available at: https://hackernoon.com/microservices-are-hard-an-invaluable-guide-tomicroservices-2d06bd7bcf5d (accessed February 1, 2024).

What is Microservices Architecture? Available at: https://smartbear.com/learn/api-design/what-are-microservices/ (accessed February 1, 2024).

Data set from Kaggle about marketing company. Available at:: https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis (accessed February 1, 2024).

Article views: 32
PDF Downloads: 13
Published
2024-05-30
How to Cite
Ivanchenko, N., & Podskrebko, O. (2024). USE OF MACHINE LEARNING METHODS AND MICROSERVICE ARCHITECTURE IN PRODUCT ANALYTICS . Scientific Bulletin of Poltava University of Economics and Trade. A Series of “Economic Sciences”, (2 (112), 66-71. https://doi.org/10.37734/2409-6873-2024-2-10